Journal of Organometallic Chemistry, 362 (1989) 63-76 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Synthesen von Bis(naphthyl)platin(II)-Verbindungen

Claus Weisemann^a, Günther Schmidtberg^b und Hans-Albert Brune^{*a}

Lehrstuhl für Organische Chemie I^a und Sektion Massenspektrometrie ^b der Universität Ulm, Oberer Eselsberg, D-7900 Ulm / Donau (B.R.D.)

(Eingegangen den 27. Juni 1988)

Abstract

The bis(naphthyl)platinum(II) compounds with substituents in the 2- or 4-positions of the naphthyl ligands, $(1,2,5,6-\eta^4$ -cycloocta-1,5-diene)bis(naphth-1-yl)platinum(II), $(1,2,5,6-\eta^4$ -hexa-1,5-diene)bis(naphth-1-yl)platinum(II) (2,3,5,6- η^4 -bicy-clo[2.2.1]hepta-2,5-diene)bis(naphth-1-yl)platinum(II), *cis*-bis(dimethylsulfoxide)bis(naphth-1-yl)platinum(II), have been synthesized from the organo-tin compounds trimethyl(naphth-1-yl)-stannane or tri(n-butyl)(naphth-1-yl)stannane with substituents in analogous positions.

Zusammenfassung

Ausgehend von den zinn-organischen Verbindungen Trimethyl(naphth-1-yl)stannan bzw. Tri(n-butyl)(naphth-1-yl)stannan mit Substituenten in der 2- bzw. 4-Position der Naphthyl-Liganden wurden die entsprechend substituierten Bis-(naphth-1-yl)platin(II)-Verbindungen (1,2,5,6- η^4 -Cycloocta-1,5-dien)bis(naphth-1yl)platin(II), (1,2,5,6- η^4 -Hexa-1,5-dien)bis(naphth-1-yl)platin(II), (2,3,5,6- η^4 -Bicyclo-[2.2.1]hepta-1,5-dien)-bis(naphth-1-yl)platin(II), *cis*-Bis(dimethylsulfoxid)bis-(naphth-1-yl)platin(II) und *cis*-Bis(naphth-1-yl)bis(triphenylphosphan)platin(II) dargestellt.

Einleitung

Verbindungen vom Typ *cis*-Bis(phenyl)bis(triphenylphosphan)platin(II) (1) eliminieren thermisch unter relativ milden Bedingungen [1] und photochemisch [2] sogar bei tiefen Temperaturen das Biphenyl-System:

 $cis-\{Pt[P(C_{6}H_{5})_{3}]_{2}(C_{6}H_{4}X)_{2}\} \rightarrow XC_{6}H_{4}C_{6}H_{4}X + \{Pt[P(C_{6}H_{5})_{3}]_{2}\}_{n}$ (1)

Die zugehörigen trans-Konfigurationen sind dagegen unter vergleichbaren Bedingungen stabil. Durch Untersuchung von Derivaten von 1, die in den verschiedenen Positionen der platin-gebundenen Phenyl-Ringe Substituenten trugen, und durch Vergleich mit den Substituenten-Positionen in den aus 1 durch die reduktive Eliminierung (Gl. 1) gebildeten substituierten Biphenvlen und insbesondere durch "Kreuzungs-Experimente" [3–9] wurde nachgewiesen, daß diese Eliminierung ein Beispiel für eine konzertierte, stereospezifische pericyclische Reaktion an einem Übergangsmetall ist. Für den Verlauf der Eliminierung sind zwei Mechanismen denkbar: (a) Die von den beiden Kohlenstoff-Atomen C(1) und C(1') und vom Platin zur Ausbildung der Platin-Kohlenstoff-o-Bindungen in 1 beigesteuerten Hybrid-Orbitale erzeugen im Übergangs-Zustand der Reaktion (Gl. 1) ein 3-Zentren-4-Elektronen-Bindungssystem, das anschließend unter Ausbildung einer σ -Bindung zwischen C(1) und C(1') zum Biphenyl und unter Entstehung eines nicht-bindenden Elektronen-Zustandes an dem - dadurch von der oxidativen Wertigkeit +2 zu 0 reduzierten – Platin zerfällt. An diesem Reaktionsverlauf wären ausschließlich Wechselwirkungen von σ -Symmetrie beteiligt (" σ -Mechanismus"); nach dem Prinzip von der Erhaltung der Orbital-Symmetrie erweist er sich als symmetrie-erlaubt [10]. (b) Aus den beiden $2p_r$ -Orbitalen von C(1) und C(1') beginnt sich - unter partieller Aufhebung des aromatischen Charakters in den beiden Phenyl-Ringen – eine σ -Bindung unter Verknüpfung beider Ringe auszubilden; die bei der konzertierten Lösung der beiden Platin-Kohlenstoff-o-Bindungsbeziehungen frei werdenden Elektronenpaare stellen dann – unter Umhybridisierung der von C(1) und C(1') zu den Bindungen zum Platin beigesteuerten sp^2 -Hybrid-Orbitale zu reinen $2p_z$ -Orbitalen – den aromatischen Charakter im entstehenden Biphenyl und einen nicht-bindenden Elektronen-Zustand am Platin her [11] (" π -Mechanismus").

Die Beobachtung, daß die reduktive Eliminierung (Gl. 1) stets dann durch eine besonders niedrige Aktivierungs-Enthalpie und eine stark negative Aktivierungs-Entropie gekennzeichnet ist [5-7,12-14], wenn in einem der beiden Phenyl-Ringe durch Substituenten mit Donor-Funktion die π -Elektronendichte auf C(1) erhöht, im zweiten Phenyl-Ring dagegen durch Substituenten mit Akzeptor-Funktion auf C(1') erniedrigt ist, wurde als Einleitung der Reaktion und energetische Absenkung des Übergangs-Zustandes durch eine Donor-Akzeptor-Wechselwirkung zwischen beiden Phenyl-Ringen und damit als Hinweis auf die unmittelbare Beteiligung der π -Elektronen-Systeme im Sinne von Mechanismus (b) gedeutet. Der Reaktionsverlauf nach (b) setzt jedoch voraus, daß die Ebenen der beiden Phenyl-Ringe angenähert parallel zueinander und weitgehend senkrecht zu derjenigen Ebene angeordnet sind, die durch die vom dsp^2 -hybridisierten Platin ausgehenden Valenzen bestimmt wird. Röntgen-Strukturanalysen [15-22] und ¹H-NMR-spektroskopische Untersuchungen [23-27] belegen zwar, daß diese Voraussetzung erfüllt ist, doch schließt die nachgewiesene Molekülstruktur den Reaktionsverlauf über den σ -Mechanismus (a) nicht aus.

Bindet man nun statt der Phenyl-Ringe Naphthyl-Systeme an das Platin, so ist ebenfalls die angenäherte Senkrechtstellung beider Naphthyl-Liganden zur Platin-Ebene vorgegeben [21,22]. Der Naphthyl-Ring läßt sich jedoch entweder über die 1oder über die 2-Position an das Zentralmetall binden. Die Aktivierungs-Enthalpien der reduktiven Binaphthyl-Eliminierung lassen beim Ablauf über den σ -Mechanismus nur geringfügige Unterschiede zwischen 1- bzw. 2-Naphthyl-Verbindungen voraussehen. Dagegen ist für den π -Mechanismus ein wesentlicher Unterschied in den Aktivierungs-Enthalpien der reduktiven Eliminierung in Abhängigkeit von der Bindung über C(1) oder über C(2) der Naphthalin-Systeme an das Platin zu erwarten; denn bei der Bindung der Naphthyl-Liganden über C(1) ist eine wesentlich ausgeprägtere Resonanz-Stabilisierung des Übergangs-Zustandes als bei Bindung über C(2) an das Platin zu erwarten. Wir vermuten daher, daß durch Vergleich der Aktivierungs-Parameter der reduktiven Eliminierung des Binaphthyl-Systems aus *cis*-Bis(naphth-1-yl)platin(II)- bzw. *cis*-Bis(naphth-2-yl)platin(II)-Verbindungen eine sichere Entscheidung über den Mechanismus der reduktiven Eliminierung möglich sein sollte. Auf der Grundlage dieser Überlegungen haben wir eine Reihe systematisch durch Substituenten und Coliganden modifizierter *cis*-Bis(naphthyl)platin(II)-Verbindungen synthetisiert und kinetisch untersucht.

Synthesen

cis-Bis(phenyl)bis(ligand)platin(II)-Verbindungen können auf besonders sicherem Wege und mit guten Ausbeuten durch Reaktion von Dichloro(1,2,5,6-n⁴-cvcloocta-1,5-dien)platin(II) [28] mit Trimethyl(phenyl)zinn-Verbindungen zu Bis(phenyl)- $(1,2,5,6-\pi^4$ -cycloocta-1,5-dien)platin(II)-Verbindungen dargestellt werden [29,30], in denen dann der COD-Ligand durch andere zweizähnige oder - dann im allgemeinen unter Erhaltung der cis-Konfiguration der Phenyl-Ringe – einzähnige Neutralliganden ausgetauscht werden. Wir haben den Anwendungsbereich dieser Methode, die gegenüber den klassischen Verfahren der Einführung von Phenyl-Liganden an Übergangsmetallhalogenide über Phenyllithium- bzw. Phenyl-Grignard-Verbindungen wesentliche Vorteile bietet, durch Verwendung der Aryltri(n-butyl)stannane [31,32] erweitert und in dieser Arbeit auf die Synthese sterisch behinderter Bis(naphthyl)platin(II)-Verbindungen angewendet. Über die für diese Synthesen erforderlichen Trialkyl(naphthyl)stannan-Edukte wurde bereits berichtet [33]. Sind allerdings – wie bei den 2-substituierten Naphth-1-yl-Liganden – die eingeführten Aryl-Gruppen sterisch anspruchsvoll, so kann der COD-Ligand nicht mehr oder nur unter so drastischen Bedingungen ausgetauscht werden, daß dabei weitgehende Zersetzung der Komplexe resultiert. Daher haben wir bei den Synthesen der Bis(naphthyl)platin(II)-Verbindungen als η^4 -Dien-Liganden neben dem Cycloocta-1,5-dien (COD) auch das flexiblere Hexa-1,5-dien (HD) und das im Vergleich zum COD kompaktere Bicyclo[2.2.1]hepta-2,5-dien (Norbornadien; NBD) als neutrale Coliganden in den Dichloro $(\eta^4$ -dien)platin(II)-Edukten eingesetzt.

Der Synthesegang wird durch Gleichung (2) beschrieben:

$$2 R_{3}Sn(naphth-1-yl) + [Pt(\eta^{4}-dien)Cl_{2}] \rightarrow [Pt(\eta^{4}-dien)(naphth-1-yl)_{2}]$$

$$A: R = CH_{3} \qquad 2: dien = COD \qquad 5: dien = COD \\B: R = n-C_{4}H_{9} \qquad 3: dien = HD \qquad 6: dien = HD \\4: dien = NBD \qquad 7: dien = NBD$$

$$(2)$$

Die dargestellten (η^4 -Dien)bis(naphth-1-yl)platin(II)-Verbindungen 5, 6 und 7 sind mit den jeweils erzielten Ausbeuten und den eingesetzten Stannanen A bzw. B in der Tabelle 1 zusammengestellt.

Außerdem wurden analog aus Tri(n-butyl)(naphth-2-yl)stannan und [Pt(COD)-Cl₂] (2) bzw. [Pt(NBD)Cl₂] (4) (1,2,5,6- η^4 -Cycloocta-1,5-dien)bis(naphth-2-yl)platin(II) (8; 84%) und (2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)bis(naphth-2-yl)platin(II)

	$(\eta^4 - \text{Dien}) \operatorname{Pt} \left[\begin{array}{c} X \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$			
	5a ^a [34]	5b	6a	ക
η^4 -Dien =	COD	COD	HD	HD
X =	H-	2-C ₂ H ₅ O-	Н-	2-C₂H₅O-
Stannan	A B	B	Α	B
Ausbeute (%)	87 88	21	89	39
	7a ^b [34]	7b	7c	7d
η^4 -Dien =	NBD	NBD	NBD	NBD
X =	H-	2-C ₂ H ₅ O-	2-CH ₃ O-	2-CH ₃ -
Stannan	В	В	В	A B
Ausbeute (%)	93	75	73	15 ° 16
	8e	81	8g	8h
η^4 -Dien =	NBD	NBD	NBD	NBD
X =	4-CH ₃ O-	$4-(CH_3)_2N-$	4-Br	4-(CH ₃) ₂ (HO)C-
Stannan	В	B	В	В
Ausbeute (%)	88	51	58	70
	8i	8j		
η^4 -Dien =	NBD	NBD		
X =	4-(C ₆ H ₅)(CH ₃)(HO)C	• 4-(CH ₃) ₃ Sn-O-CO-		
Stannan	В	Α		
Ausbeute (%)	73	83		

Tabelle 1 Synthetisierte (η^4 -Dien)bis(naphth-1-yl)platin(II)-Verbindungen

^a Die Vergleichssynthesen mit 1-Lithionaphthalin bzw. Naphth-1-yl-magnesiumbromid lieferten nur Ausbeuten unter 5%. ^b In [34] auf direktem Wege dargestellt. ^c Hauptprodukt war [Pt(NBD)(2-CH₃naphth-1-yl)Cl].

(9; 78%) synthetisiert:

$$2 (n-C_{4}H_{9})_{3}Sn(naphth-2-yl) + [Pt(COD)Cl_{2}] \rightarrow [Pt(COD)(naphth-2-yl)_{2}]$$
(2)
(8)
$$2 (n-C_{4}H_{9})_{3}Sn(naphth-2-yl) + [Pt(NBD)Cl_{2}] \rightarrow [Pt(NBD)(naphth-2-yl)_{2}]$$
(4)
(9)
$$8 + 2 P(C_{6}H_{5})_{3} \rightarrow \{Pt[P(C_{6}H_{5})_{3}]_{2}(naphth-2-yl)_{2}\}$$
(10)
$$8 + 2 OS(CH_{3})_{2} \rightarrow \{Pt[OS(CH_{3})_{2}]_{2}(naphth-2-yl)_{2}\}$$
(11)

Auch in diesen Reaktionen lieferte der zinn-organische Weg wesentlich höhere Ausbeuten als die Direktmethode über 2-Lithionaphthalin bzw. Naphth-2-yl-magnesiumbromid [34]. Die – für die einzelnen Verbindungen teilweise stark differierenden – Darstellungsbedingungen werden im experimentellen Teil referiert.

Alle Verbindungen der Typen 5, 6, 7, 8 und 9 sind bei Raumtemperatur sauerstoff- und wasser-beständig. Die Bis(naphth-1-yl)platin-Komplexe 5a,b mit dem Cycloocta-1,5-dien-Liganden waren gegenüber Ligandenaustausch mit Triphenylphosphan und Dimethylsulfoxid inert; aus diesem Grunde wurde die Verbindungsreihe 5 nicht – wie bei 7a-i – weiter fortgesetzt. Lediglich an der Naphth-2-yl-Verbindung $[Pt(COD)(naphth-2-yl)_2]$ (8) gelang – unter Konfigurationserhalt – der Ligandenaustausch zum cis-Bis(naphth-2-yl)bis (triphenylphosphan)platin(II) (10) und cis-Bis(dimethylsulfoxid)bis(naphth-2-yl)platin(II) (11). Dieses Ergebnis deutete bereits auf einen zum sterischen Einfluß des Naphth-1-yl-Liganden zusätzlich wirkenden abschirmenden Beitrag des relativ großen COD-Liganden auf den Ligandenaustausch hin. Diese Vermutung wurde durch den glatten Verlauf der Austauschreaktionen an den Hexa-1,5-dien- (6a, 6b) und Norbornadien-naphth-1-yl-Komplexen (7a-j) mit Triphenylphosphan zu den cis-Bis(naphth-1-yl)bis(triphenylphosphan)platin(II)-Verbindungen 1a-i und durch den Ligandenaustausch an 6a und 7a mit Dimethylsulfoxid zu 12a bestätigt. Dabei darf allerdings die glatte Austauschbarkeit des Norbornadiens nicht ausschließlich sterisch begründet werden; denn durch den fixierten spezifischen Abstand seiner beiden Doppelbindungen und durch die starre, nicht parallele Orientierung der sie erzeugenden 2 p-Orbitale besitzt es vermutlich auch eine geringere Koordinationsfähigkeit gegenüber Platin als Cycloocta-1,5-dien.

$$7\mathbf{a}-\mathbf{j} + 2 \mathbf{P}(\mathbf{C}_{6}\mathbf{H}_{5})_{3} \rightarrow \left\{ \mathbf{P}(\mathbf{P}(\mathbf{C}_{6}\mathbf{H}_{5})_{3}]_{2}(\mathbf{X}-\mathbf{naphth}-1-\mathbf{y})_{2} \right\}$$

(1a-j; X wie in Tab. 1)

$$\begin{aligned} \mathbf{6a,b} + 2 \ P(C_6H_5)_3 &\to \mathbf{1a,b} \\ \mathbf{6a} + 2 \ OS(CH_3)_2 \\ \mathbf{7a} + 2 \ OS(CH_3)_2 \\ &\to \{ Pt[OS(CH_3)_2]_2(X\text{-naphth-1-yl})_2 \} \\ & (\mathbf{12a}) \\ \mathbf{9} + 2 \ P(C_6H_5)_3 &\to \{ Pt[P(C_6H_5)_3]_2(naphth-2\text{-yl})_2 \} \\ & (\mathbf{10}) \\ \mathbf{9} + 2 \ OS(CH_3)_2 &\to \{ Pt[OS(CH_3)_2]_2(naphth-2\text{-yl})_2 \} \\ & (\mathbf{11}) \end{aligned}$$

Schließlich wurde – mit besseren Ausbeuten als an 8 – der Norbornadien-Ligand in 9 glatt mit Triphenylphosphan zu 10 und mit Dimethylsulfoxid zu 11 ausgetauscht.

Über die zur Aufklärung des Mechanismus der Reaktion (1) durchgeführten kinetischen Untersuchungen wird gesondert berichtet.

Experimenteller Teil

Verwendete Geräte und Methoden wie in Lit. [23].

Im Folgenden werden zur Charakterisierung bzw. Identifizierung der Verbindungen aus Platzgründen nur diejenigen spektroskopischen Daten mitgeteilt, die unmittelbar als Grundlage für Konstitutions- bzw. Konfigurations-Aussagen verwendet wurden; vollständige Daten bzw. gegebenenfalls Spektrenkopien können für Vergleichszwecke angefordert werden.

Synthesen (Mit Ausnahme der Ligandenaustausch-Reaktionen mit Triphenylphosphan erforderten die Synthesen keine Schutzgas-Atmosphäre):

 $(1,2,5,6-\eta^4$ -Cycloocta-1,5-dien)bis(naphth-1-yl)platin(II) (5a). A: Eine Lösung von 0.61 g (1.63 mmol) [Pt(COD)Cl₂] [28] und 1.22 g (4.20 mmol) Trimethyl(naphth-1-

yl)stannan [33] in 50 ml CH₂Cl₂ wurde 17 h unter Rückfluß erhitzt; mit der zur Kontrolle des Reaktionsverlaufs eingesetzten DC konnte nach dieser Zeit kein [Pt(COD)Cl₂] und [Pt(COD)(naphth-1-yl)Cl] mehr nachgewiesen werden. Nach dem Abkühlen wurde die Lösung mit der Hälfte ihres Volumens an Methanol versetzt. Dann wurden im Rotationsverdampfer (die dem ursprünglichen Volumen CH₂Cl₂ entsprechenden) 50 ml abgezogen, wobei bereits ein Teil des Produktes ausfiel. Nach 24 h bei - 20°C wurde der Niederschlag isoliert und mit je 20 ml Methanol und Diethylether gewaschen. Das Produkt war DC-rein. Ausb. 0.87 g (87%, bezogen auf eingesetztes [Pt(COD)Cl₂]. B: Analog zu A aus 0.52 g (1.39 mmol) [Pt(COD)Cl₂] und 2.15 g (5.16 mmol) Tri(n-butyl)(naphth-1-yl)stannan [33] in 80 ml CH₂Cl₂; 21 h unter Rückfluß. Ausb. 0.69 g (88%). Nach DSC-Untersuchung bis 227°C kein Phasenübergang; ab 227°C Zersetzung (Schmp. lt. [34] 175-195 °C, Zers.). Infolge Schwerlöslichkeit kein NMR-Spektrum. IR (KBr, cm⁻¹): 1580, 1550, 1495 (aromat. Gerüstschwingungen); 1480, 1425 (δ [CH₃], δ [CH₂]); 805, 792, 785, 775, 765 (γ [C-H_{aromat}]); 665 (γ [C-H_{COD}]); 560, 548 (ν_{as} , ν_{s} [Pt-C]). MS (EI, 70 eV): $M^+ m/e = 557$ (ber. 557 für ¹⁹⁵Pt). Analyse: Gef.: C, 60.06; H, 4.68. C₂₈H₂₆Pt (557.59) ber.: C, 60.31; H, 4.70%.

(1,2,5,6-n⁴-Cycloocta-1,5-dien)bis[2-(ethoxy)naphth-1-yl]platin(II) (5b). Zunächst analog zu 5a aus 0.84 g (2.24 mmol) [Pt(COD)Cl₂] und 2.55 g (5.52 mmol) Tri(n-buty)[2-(ethoxy)naphth-1-yl]stannan [33] in 100 ml CH₂Cl₂; 22 h unter Rückfluß. Dann wurde das Reaktionssystem auf 0°C abgekühlt und bei dieser Temp. eine Lösung von 3.0 g (18 mmol) AgNO₃ in 60 ml Methanol hinzugefügt. Nach 3-stündigem Rühren bei 0°C wurde die Reaktionsmischung mit 300 g Eiswasser hydrolysiert und anschließend wie bei 5a aufgearbeitet. Ausb. 0.31 g (21%), farbl. Krist., Schmp. 248°C (Zers.). ¹H-NMR (CDCl₃; 300 MHz): δ 1.76 (t; ${}^{3}J$ 6.9 Hz; OCH₂-CH₃); 2.38–2.77 (kompl. m der CH₂ aus COD); 4.14, 4.22 (nicht-aufgel. m der nicht-äquivalenten O-CH2-CH3); 5.20, 5.33 (nicht-äquival. H_{olefin} aus COD); 6.91-7.65 (kompl. m von 10H_{aromat}); 9.11 (m der 2 peri-H_{aromat}); gem. Int.-Verh. 6.4/8.1/4.0/3.6/10.1/1.9 (ber. 6/8/4/4/10/2). IR (KBr): 1610, 1580, 1500 (Gerüstschw.); 1475, 1470 (δ_{as} [CH₃]; δ_{as} [CH₂]); 1430 (δ_{s} [CH₂]); 1385 $(\delta_{s}[CH_{3}]); 1225 (\nu[C(sp^{2})-0]); 1060 (\nu[C(sp^{3})-0]); 800, 785, 775, 745)$ $(\gamma[C-H_{aromat}]); 665, 645 (\gamma[C-H_{COD}]); 550, 535 (\nu_{as}, \nu_{s}[Pt-C]).$ MS (FD): M^{+} m/e = 645 (ber. 645 für ¹⁹⁵Pt). Analyse: Gef.: C, 59.61; H, 5.28. C₃₂H₃₄O₂Pt (645.70) ber.: C, 59.52; H, 5.31%.

(1,2,5,6- η^4 -Hexa-1,5-dien)bis(naphth-1-yl)platin(II) (6a). Analog zu 5a aus 0.74 g (2.53 mmol) Trimethyl(naphth-1-yl)stannan [33] und 0.38 g (1.09 mmol) Dichloro(1,2,5,6-hexa-1,5-dien)platin(II) [35] in 24 ml CH₂Cl₂; 25 h bei Raumtemp.; Ausb. 0.52 g (89%); Schmp. 170 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 2.2–3.2 (kompl. m der 4H_{aliphat} aus HD); 3.9–5.9 (kompl. m der 6H_{olefin} aus HD); 6.9–8.5 (kompl. m von 12H_{aromat}); 8.7–9.3 (kompl. m der 2 *peri*-H_{aromat}); gem. Int.-Verh. 4.0/5.8/12.2/2.0 (ber. 4/6/12/2). IR (KBr): 1580, 1550, 1495 (Gerüstschw.); 1455, 1435 (δ_s , δ_{as} [CH₂]); 795, 785, 780 (γ [C–H_{napth}]); 645 (γ [C–H_{olefin}]). MS (FD): M^+ m/e = 531 (ber. 531 für ¹⁹⁵Pt). Analyse: Gef.: C, 55.32; H, 4.46. C₂₆H₂₄Pt · $\frac{1}{2}$ CH₂Cl₂ (547.02) ber.: C, 55.45; H, 4.39%.

 $(1,2,5,6-\eta^4$ -Hexa-1,5-dien)bis[2-(ethoxy)naphth-1-yl]platin(II) (6b). 0.19 g (0.54 mmol) [Pt(η^4 -HD)Cl₂] [35] und 0.92 g (2.00 mmol) Tri(n-butyl)[2-(ethoxy)naphth-1-yl]stannan [33] in 25 ml CH₂Cl₂ wurden zunächst 5 h bei Raumtemp. gerührt. Anschließend wurde zu dem auf 0°C abgekühlten Reaktionsgemisch eine Lösung

von 0.80 g (4.71 mmol) AgNO₃ in 20 ml CH₃OH getropft. Die entstandene Suspension wurde 2 h bei 0°C gerührt und dann mit je 100 ml CH₂Cl₂ und H₂O geschüttelt. Nach der Phasentrennung wurde die wässerige Schicht dreimal mit je 100 ml CH₂Cl₂ extrahiert. Von den über Na₂SO₄ getrockneten vereinigten organischen Phasen wurde das Lösungsmittel abgezogen; der braune Rückstand wurde säulenchromatographisch in CH_2Cl_2 an Kieselgel gereinigt. Ausb. 0.13 g (39%); Schmp. 148°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.70 (t; ${}^{3}J$ 7 Hz; CH_3 -CH₂O); 1.75 (t; ³J 7 Hz; CH_3 CH₂O; aus dem Auftreten von 2 t folgt die E-Konformation); 2.00-3.10 (kompl. m der 2 CH₂ aus HD); 3.60-6.25 (kompl. m der $6H_{olefin}$ aus HD und 4H aus CH₂-CH₂-O); 6.70–7.75 (kompl. m von $10H_{aromat}$); 8.90-9.25 (kompl. m der 2 peri-H_{aromat}); gem. Int.-Verh. 5.7/3.5/10.4/10.5/2.0 (ber. 6/4/10/10/2). (CDCl₃; 300 MHz): 1.68 (t; ${}^{3}J = 6.95$ Hz; CH₃-CH₂-O); 1.72 (t; ${}^{3}J$ 6.94 Hz; CH₃-CH₂-O); 2.17–2.80 (kompl. m der 2 CH₂ aus HD); 4.04–4.25 (kompl. m von 2H_{olefin} und 4H aus CH₃-CH₂-O); 4.58 (d, flankiert von dd, ${}^{3}J_{cis}$ 8.5 Hz; ²J[¹⁹⁵Pt,H] 38.3 Hz; 1H_{olefin}, exo an C(1) od. C(6) von HD); 4.66 (d, flankiert von dd, ${}^{3}J_{cis}$ 8.3 Hz; ${}^{2}J[{}^{195}Pt,H]$ 40.9 Hz; 1H_{olefin} exo an C(6) od. C(1) von HD); 5.13-5.40 und 5.63-5.69 (m,m; jeweils 1 H_{olefin} an C(2) bzw. C(5) von HD); 6.87-7.54 (kompl. m von 10H_{aromat}); 9.08-9.13 (m; 2 peri-H_{aromat}); gem. Int.-Verh. 6.0/3.3/6.0/1.8/1.1/0.9/10.9/2.1 (ber. 6/4/6/2/1/1/10/2). IR (KBr): 1615, 1580, 1500 (Gerüstschw.); 1450, 1440 (δ_{α_5} [CH₃]; δ_{s_5} [CH₂]); 1390 (δ_{s_5} [CH₃]); 1225 $(\nu[C(sp^2)-O]); 1060 (\nu[C(sp^3)-O]); 795, 745 (\gamma[C-H_{aromat}]))$. MS (FD): $M^+ m/e =$ 619 (ber. 619 für ¹⁹⁵Pt). Analyse: Gef.: C, 58.13; H, 5.44. C₃₀H₃₂O₂Pt (619.66) ber.: C, 58.15; H, 5.21%.

 $(2,3,5,6-\eta^4-Bicyclo[2.2.1]$ hepta-2,5-dien)bis(naphth-1-yl)platin(II) (7a). 0.40 g (1.1 mmol) [Pt(NBD)Cl₂] [36] wurden zunächst 5 h mit 0.70 g (2.4 mmol) Trimethyl(naphth-1-yl)stannan [33] in 30 ml CH₂Cl₂ bei Raumtemp. gerührt (bissich mittels DC kein weiterer Reaktionsfortschritt mehr nachweisen ließ). Nach Zugabe von 20 ml CH₃OH wurde das gesamte Lösungsmittel im Rotationsverdampfer abgezogen und der Rückstand in CH₂Cl₂ an SiO₂ (mit 1% H₂O) chromatographiert. Ausb. 0.56 g (93%); Schmp. 210°C (Zers.) (170-190°C nach [34], Darstellung über 1-Lithionaphthalin). ¹H-NMR (CDCl₃; 60 MHz): 1.70 (kompl. m; CH₂ aus NBD); 4.3 (m; H_{Brückenkopf} aus NBD); 5.45 (m; ²*J*[¹⁹⁵Pt,H] 40 Hz; H_{olefin} aus NBD); 6.9-8.0 (m; 12H_{aromat}); 8.6-9.0 (m; 2 peri-H_{aromat}); gem. Int.-Verh. 1.9/1.8/4.2/12.0/1.8 (ber. 2/2/4/12/2). ${}^{13}C{}^{1}H{}-NMR$ (CDCl₃): 50.8 (C_{Brückenkopf} aus NBD; ²J[¹⁹⁵Pt,C] 37.0 Hz); 75.2 (CH₂ aus NBD); 97.2 (C_{olefin}; ¹*J*[¹⁹⁵Pt,C] 42.5 Hz); 122.9, 123.7, 124.4, 125.9, 128.3, 129.9, 132.2, 134.7, 138.2 (C_{naphth}; C(2) bis C(10)); 156.3 (C(1)). IR (KBr): 1600, 1580, 1496 (Gerüstschw.); 1310 (δ [C-H_{Brückenk}]); 795, 780, 760 (γ [C-H_{aromat}]). MS (EI): $M^+ m/e = 541$ (ber. 541 für ¹⁹⁵ Pt). Analyse: Gef.: C, 59.72; H, 3.97. C₂₇H₂₂Pt (541.55) ber.: C, 59.88; H, 4.09%.

 $(2,3,5,6-\eta^4$ -Bicyclo[2.2.1]hepta-1,5-dien)bis[2-(ethoxy)naphth-1-yl]platin(II) (7b). 0.50 g (1.40 mmol) [Pt(NBD)Cl₂] und 1.69 g (3.66 mmol) Tri(n-butyl)[2-(ethoxy)naphth-1-yl]stannan [33] wurden 2 h unter Rückfluß in 80 ml CH₂Cl₂ erhitzt. Dann wurde bei 0°C eine Lösung von 1.00 g (5.90 mmol) AgNO₃ in 40 ml CH₃OH zugetropft, das Reaktionsgemisch 2 h bei 0°C weitergerührt und schließlich mit je 40 ml H₂O und CH₂Cl₂ verdünnt. Nach Filtration, Phasentrennung und Extraktion der wässerigen Phase mit dreimal je 40 ml CH₂Cl₂ wurden die vereinigten organischen Phasen über Na₂SO₄ getrocknet und nach Zugabe von 40 ml 70

CH₃OH bis zur Trockne vom Lösungsmittel befreit. Reinigung wie bei 7a. Ausb. 0.60 g (75%); Schmp. 220 °C (Zers.). ¹H-NMR (CDCl₃; 300 MHz): 1.62 (m; CH₂ aus NBD); 1.81 (t; ³J 7 Hz; CH₃-CH₂-O-); 4.22–4.35 (m; H_{Brückenk}. aus NBD und CH₃-CH₂-O-); 5.41 (m; ²J[¹⁹⁵Pt,H] 41.9 Hz; 2H_{olefin} aus NBD); 6.19 (m; ²J[¹⁹⁵Pt,H] 42.6 Hz; 2H_{olefin} aus NBD); 6.93–7.53 (m; 10H_{aromat}); 9.10–0.12 (m; 2 *peri*-H_{aromat}); gem. Int.-Verh. 8.0/5.8/4.2/10.2/1.8 (ber. (2 + 6)/(2 + 4)/(2 + 2)/(10/2). ¹³C-NMR (CDCl₃): 15.7 (CH₃-CH₂-O-); 50.1 (C_{Brückenk}. aus NBD; ²J[¹⁹⁵Pt,C] 41.7 Hz); 62.8 (CH₃-CH₂-O-); 73.5 (CH₂ aus NBD; ³J[¹⁹⁵Pt,C] 48.0 Hz); 91.4 (C_{olefin}; ¹J[¹⁹⁵Pt,C] 50.7 Hz); 92.6 (C_{olefin}; ¹J[¹⁹⁵Pt,C] 51.3 Hz); Naphth-1-yl-Ligand: 113.0 (J[¹⁹⁵Pt,C] 46.2 Hz); 122.3, 122.8, 125.1, 127.1, 130.0 (J[¹⁹⁵Pt,C] 56.9 Hz), 132.6 (J[¹⁹⁵Pt,C] 92.4 Hz), 137.9, 140.4 (J[¹⁹⁵Pt,C] 26.5 Hz), 155.4 (J[¹⁹⁵Pt,C] 26.5 Hz). IR (KBr): 1615, 1585, 1500 (Gerüstschw.); 1450, 1440 (δ_s [CH₂], δ_{as} [CH₃]); 1315 (δ [C-H_{Brückenk}]); 1230 (ν [C(sp^2)-O]); 1060 (ν [C(sp^3)-O]); 800, 755, 750 (γ [C-H_{aromat}]). MS (EI): M⁺ m/e = 629 (ber. 629 für ¹⁹⁵Pt). Analyse: Gef.: C, 59.11; H, 4.81%. Röntgen-Strukturanalyse [22].

(2,3,5,6-n⁴-Bicyclo/2.2.1]hepta-2,5-dien)bis/2-(methoxy)naphth-1-yl]platin(II) (7c). Analog zu 7b aus 0.37 g (1.04 mmol) [Pt(NBD)Cl₂], 1.40 g (3.14 mmol) Tri(nbutyl)[2-(methoxy)naphth-1-yl]stannan [33] in 30 ml CH₂Cl₂ (2 h bei Raumtemp.) und 0.80 g (4.71 mmol) AgNO₃ in 20 ml CH₃OH (0°C; 3 h). Ausb. 0.46 g (73%); Schmp. 207-208°C (Zers.). ¹H-NMR (CDCl₃; 300 MHz): 1.65 (m; CH₂ aus NBD); 3.94 (s; CH₃O-); 4.31 (m; H_{Brückenk} aus NBD); 5.51 (m; ²J[¹⁹⁵Pt,H] 41 Hz; 2H_{olefin} aus NBD); 6.02 (m; ²J[¹⁹⁵Pt,H] 41 Hz; 2H_{olefin} aus NBD); 6.91-7.65 (m von 10H_{aromat}); 9.07-9.09 (m der 2 *peri*-H_{aromat}); gem. Int.-Verh. 1.8/6.1/1.9/4.1/ 10.0/2.2 (ber. 2/6/2/(2+2)/10/2). ¹³C-NMR(CDCl₃): 50.3 (C_{Brückenk}); 55.6 (CH₃O-); 73.5 (CH₂ aus NBD); 91.3, 93.0 (C_{olefin} aus NBD); Naphth-1-yl-Ligand: 113.0, 122.4, 123.1, 125.2, 127.1, 130.3, 132.6, 142.0 (C(2) bis C(10)), 156.4 (C(1)); ¹⁹⁵Pt,C-Satelliten im Rauschpegel nicht identifizierbar. IR (KBr): 2820 (v[CH₃O]); 1610, 1580, 1500 (Gerüstschw.); 1315 (δ [C-H_{Brlickenk}]); 1240 (ν [C(sp²)-O]); 1060 $(\nu[C(sp^3)-O]); 800, 750, 745 (\gamma[C-H_{aromat}]). MS (FD): M^+ m/e = 601 (ber. 601 für$ ¹⁹⁵Pt). Analyse: Gef.: C, 57.73; H, 4.30. C₂₉H₂₆O₂Pt (601.60) ber.: C, 57.90; H, 4.36%.

(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)bis[2-(methyl)naphth-1-yl]platin(II) (7d). Methode B: Analog zu 7b aus 0.16 h (0.44 mmol) [Pt(NBD)Cl₂], 0.54 g (1.26 mmol) Tri(n-butyl)[2-(methyl)naphth-1-yl]stannan [33] in 20 ml CH₂Cl₂ (0 °C, 2 h) und 0.22 g (1.60 mmol) AgBF₄ in 5 ml CH₃OH (6 h bei 0 °C). Ausb. 40.0 mg (16%). Methode A: Analog zu 7b aus 0.16 g (0.44 mmol) [Pt(NBD)Cl₂], 0.44 g (1.25 mmol) Trimethyl[2-(methyl)naphth-1-yl]stannan [33] in 20 ml CH₂Cl₂ (2 h, 0 °C) und 0.22 g (1.60 mmol) AgBF₄ (6 h, 0 °C). Ausb. 30 mg (15%). Schmp. 186 °C (Zers.). ¹H-NMR (CDCl₃; 300 MHz; infolge Schwerlöslichkeit und durch hohe Verstärkung verursachtes Rauschen keine sichere Identifizierung und Zuordnung folgender Signale möglich): 1.55, 1.70, 2.52, 2.62, 2.87; 4.44 (m; H_{Brückenkopf} aus NBD); 5.62–5.80 (m; H_{olefin} aus NBD); 6.91–7.66 (m; H_{naphthyl}); 9.04–9.07 (2 *peri*-H_{naphthyl}). IR (KBr): 1540, 1500 (Gerüstschw.); 1450, 1430 (δ_s[CH₂]; δ_{as}[CH₃]); 1370 (δ_s[CH₃]); 1310 (δ[C-H_{Brückenk}]); 810, 800, 750, 740 (γ[C-H_{aromat}]). MS (FD): M⁺m/e = 569 (ber. 569 für ¹⁹⁵Pt). Analyse: Gef.: C, 60.85; H, 4.95. C₂₉H₂₆Pt (569.61) ber.: C, 61.16; H, 4.60%.

 $(2,3,5,6-\eta^4$ -Bicyclo[2.2.1]hepta-2,5-dien)bis[4-(methoxy)naphth-1-yl]platin(II) (7e).

Analog zu 7a aus 0.33 g (0.92 mmol) [Pt(NBD)Cl₂], 1.17 g (2.60 mmol) Tri(nbutyl)[4-(methoxy)naphth-1-yl]stannan [33] in 48 ml CH₂Cl₂ (8 h, 0°C). Ausb. 0.56 g (88%); Schmp. 146–148°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.70 (m; CH₂ aus NBD); 3.81 (s; CH₃O); 4.41 (m; H_{Brückenk} aus NBD); 5.70 (m; ²J[¹⁹⁵Pt,H] 45 Hz; H_{olefin}); 6.3–8.4 (m; 10H_{naphthyl}); 8.5–9.0 (m; 2 *peri*-H_{naphthyl}); gem. Int.-Verh. 1.9/5.6/2.4/9.9/2.1 (ber. 2/6/2/4/10/2). ¹³C-NMR (CDCl₃): 50.6 (C_{Brückenk} aus NBD; ²J[¹⁹⁵Pt,C] 37.7 Hz); 55.3 (CH₃O); 75.0 (CH₂ aus NBD; ³J[¹⁹⁵Pt,C] 49.0 Hz); 96.6 (C_{olefin}; ¹J[¹⁹⁵Pt,C] 44.4 Hz); Naphthyl-C: 105.2 (J[¹⁹⁵Pt,C] 93.5 Hz); 122.1, 123.9, 124.2, 126.7 (J[¹⁹⁵Pt,C] 56.6 Hz), 126.8 (J[¹⁹⁵Pt,C] 41.5 Hz), 131.7 (J[¹⁹⁵Pt,C] 80.8 Hz), 138.4 (J[¹⁹⁵Pt,C] 46.8 Hz), 146.0, 152.1. IR (KBr): 2820 (ν (CH₃O]); 1610, 1580, 1500 (Gerüstschw.); 1460, 1440 (δ_s [CH₂], δ_{as} [CH₃]); 1305 (δ [C-H_{Brückenk}]); 1250 (ν [C(sp^2)-O]); 1080 (ν [C(sp^3)-O]); 815, 805, 750, 730 (γ [C-H_{aromat}]). MS (FD): $M^+ m/e = 601$ (ber. 601 für ¹⁹⁵Pt). Analyse: Gef.: C, 52.03; H, 4.30. C₂₉H₂₆O₂Pt · CH₂Cl₂ (686.53) ber.: C, 52.49; H, 4.11%.

(2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)bis[4-(dimethylamino)naphth-1-yl]platin(II) (7f). Analog zu 7a aus 0.16 g (0.46 mmol) [Pt(NBD)Cl₂] und 0.44 g (0.95 mmol) Tri(n-butyl)[4-(dimethylamino)naphth-1-yl]stannan [33] in 15 ml CH₂Cl₂ (4 h, 0 ° C). Ausb. 0.17 g (51%). Schmp. 155 ° C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.72 (m; CH₂ aus NBD); 2.70 (s; N(CH₃)₂); 4.30 (m; H_{Brückenk} aus NBD); 5.61 (m; H_{olefin} aus NBD; ²J[¹⁹⁵Pt,H] 40 Hz); 6.6-8. 3 (m; 10H_{naphthyl}); 8.6-9.0 (m; 2 *peri*-H_{naphthyl}); gem. Int.-Verh. 2.2/11.5/2.2/4.2/9.5/2.3 (ber. 2/12/2/4/10/2). IR (KBr): 2820, 2770 (ν_{as} , ν_s [(CH₃)₂N]); 1575, 1550, 1500 (Gerüstschw.); 1370 (δ [CH₃]); 1315 (ν [C(sp^2)-N]); 1310 (δ [C-H_{Brückenk}]); 820, 770, 755 (γ [C-H_{naphthyl}]). MS (FD): M^+ m/e = 627 (ber. 627 für ¹⁹⁵Pt). Analyse: Gef.: C, 53.90; H, 4.55; N, 3.90. C₃₁H₃₂N₂Pt · CH₂Cl₂ (712.62) ber.: C, 53.93; H, 4.85; N, 3.93%.

(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)bis(4-bromnaphth-1-yl)platin(11) (7g). Analog zu 7a aus 0.57 g (1.59 mmol) [Pt(NBD)Cl₂] und 1.97 g (4.00 mmol) Tri(n-butyl)(4-bromnaphth-1-yl)stannan [33] in 50 ml CH₂Cl₂ (2 h; Raumtemp.). Ausb. 0.72 g (58%). Ausb. 0.72 g (58%). Schmp. 204–206 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.6 (m; CH₂ aus NBD); 4.3 (m; H_{Brückenk}. aus NBD); 5.6 (m; H_{olefin} aus NBD; ²J[¹⁹⁵Pt,H] 43 Hz); 7.3–8.5 (m; 10 H_{naphthyl}); 8.7–9.3 (m; 2 *peri*-H_{naphthyl}); gem. Int.-Verh. 2.1/2.0/3.8/10.0/2.1 (ber. 2/2/4/10/2). IR (KBr): 1560, 1550, 1485 (Gerüstschw.); 1310 (δ [C-H_{Brückenk}.]); 820, 750 (γ [C-H_{naphth}]). MS (FD): M⁺ m/e = 697 (ber. 697 für ¹⁹⁵Pt, ⁷⁹Br). Analyse: Gef.: C, 42.59; H, 2.99. C₂₇H₂₀Br₂Pt · CH₂Cl₂ (784.28) ber.: C, 42.88; H, 2.83%.

(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)bis[4-(2-hydroxyprop-2-yl)naphth-1yl]platin(II) (7h). Analog zu 7a aus 0.27 g (0.75 mmol) [Pt(NBD)Cl₂] und 1.68 g (3.50 mmol) Tri(n-butyl)[4-(2-hydroxyprop-2-yl)naphth-1-yl]stannan [33] in 40 ml CH₂Cl₂ (6 h; Raumtemp.). Ausb. 0.34 g (70%). Schmp. 180–182°C (Zers.). ¹H-NMR (Aceton-d₆; 60 MHz): 1.5–1.9 (nicht aufgel. m; 2 CH₃ und CH₂ aus NBD, 2 OH); 4.5 (m; H_{Brückenk} aus NBD); 5.8 (H_{olefin} aus NBD; ²J[¹⁹⁵Pt,H] 39 Hz); 6.8–7.6 (10H_{naphthyl}); 8.5–9.2 (2 peri-H_{naphthyl}); gem. Int.-Verh. 15.8/1.9/3.9/12.0 (ber. 16/2/4/(10 + 2)). IR (KBr): 3560 (ν [O-H]); 3450 (breit, ν [O-H_{Brücke}]) 1550, 1500 (Gerüstschw.); 1370, 1365 (δ[CH₃]); 1310 (δ[C-H_{Brückenk}.]); 1150 (ν [C-O]); 830, 740 (γ [C-H_{naphthyl}]). MS (FD): M⁺ m/e = 657 (ber. 657 für ¹⁹⁵Pt). Analyse: Gef.: C, 59.87; H, 5.38. C₃₃H₃₄O₃Pt (657.71) ber.: C, 60.26; H, 5.21%.

 $(2,3,5,6-\eta^4$ -Bicyclo[2.2.1]hepta-2,5-dien)bis[4-(1-hydroxy-1-phenyl-ethyl)naphth-1-

72

yl]platin(II) (7i). Analog zu 7a aus 0.17 g (0.47 mmol) [Pt(NBD)Cl₂] und 0.71 g (1.32 mmol) Tri(n-butyl)[4-(1-hydroxy-1-phenyl-ethyl)naphth-1-yl]stannan [33] in 35 ml CH₂Cl₂ (23 h; Raumtemp.). Ausb. 0.28 g (73%); Schmp. 169–171°C (Zers.). Infolge Schwerlöslichkeit kein ¹H- und ¹³C-NMR-Spektrum registrierbar. IR (KBr): 3550 (ν [O-H]); 3450 (breit, ν [O-H_{H-Brücke}]); 1600, 1550 (Gerüstschw.); 1450 (δ_s [CH₂] bzw. δ_{as} [CH₃]); 1365 (δ_s [CH₃]); 1310 (δ [C-H_{Brückenk.}]); 1190 (ν [C-O]); 830, 790, 760, 700 (γ [C-H_{naphthyl}]). MS (FD): M^+ m/e = 781 (ber. 781 für ¹⁹⁵Pt. Analyse: Gef.: C, 66.33; H, 4.87. C₄₃H₈O₂Pt (781.86) ber.: C, 66.06; H, 4.90%.

(2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)bis[4-(trimethylstannyloxycarbonyl)naphth-1-yl]platin(II) (7j). Analog zu 7a aus 0.36 g (1.01 mmol) [Pt(NBD)Cl₂] und 1.10 g (2.20 mmol) Tri(n-butyl)[4-(trimethylstannyloxycarbonyl)naphth-1-yl]stannan [33] in 50 ml CH₂Cl₂ (22 h; Raumtemp.). Ausb. 0.79 g (83%). Zers. ab 170 ° C. ¹H-NMR (CDCl₃; 60 MHz): 0.51 (s, flankiert von d; ²J[¹¹⁷Sn,H] = ²J[¹¹⁹Sn,H] = 58 Hz; (CH₃)₃Sn); 1.7 (m; CH₂ aus NBD); 4.4 (m; H_{Brückenk} aus NBD); 5.7 (m; ²J[¹⁹⁵Pt,H] 40 Hz; H_{olefin} aus NBD); 7.3-8.3 (m; 8H_{naphthyl}); 8.9-9.3 (m; 2 peri-H_{naphthyl} und 2 H_{naphthyl} peri-ständ. zu CO-O-Sn(CH₃)₃); gem. Int.-Verh. 19.7/2.0/1.9/3.8/8.6/3.8 (ber. 18/2/4/8/4). IR (KBr): 1625 (ν [C=O]); 1550, 1500 (Gerüstschw.); 1300 (ν [C-O]); 540 (ν [Sn-C]). MS (FD): M^+ m/e = 957 (ber. 957 für ¹²⁰Sn, ¹⁹⁵Pt). Analyse: Gef.: C, 44.03; H, 4.00. C₃₅H₃₈O₄Sn₂Pt (955.18) ber.: C, 44.01; H, 4.01%.

 $(1,2,5,6-\eta^4$ -Cycloocta-1,5-dien)bis(naphth-2-yl)platin(II) (8). Analog zu 7a aus 0.54 g (1.44 mmol) [Pt(COD)Cl₂] und 1.28 g (3.06 mmol) Tri(n-butyl)(naphth-2-yl)stannan [33] in 50 ml CH₂Cl₂ (6 h; Raumtemp.). Ausb. 0.67 g (84%); Schmp. 173°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 2.50 (kompl. m der 8H_{aliphat} aus COD); 5.10 (kompl. m der 4H_{olefin} aus COD; ¹J[¹⁹⁵Pt,H] 40 Hz); 6.8–8.4 (kompl. m der 14H_{naphthyl}); gem. Int.-Verh. 7.8/3.9/14.3 (ber. 8/4/14). IR (KBr): 1620, 1580, 1500 (ν [C=C] und Gerüstschw.); 1480, 1430 (δ [CH₂]); 850, 812, 760, 750 (γ [C-H_{naphthyl}]); 630 (γ [C-H_{olefin}]); 480 (ν [Pt-C]). MS (FD): M^+ m/e = 557 (ber. 557 für ¹⁹⁵Pt). Analyse: Gef.: C, 60.41; H, 4.72. C₂₈H₂₆Pt (557.59) ber.: C, 60.31; H, 4.70%.

(2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)bis(naphth-2-yl)platin(II) (9). Analog zu 7a aus 0.43 g (1.19 mmol) [Pt(NBD)Cl₂] und 1.05 g (2.53 mmol) Tri(nbutyl)(naphth-2-yl)stannan [33] in 50 ml CH₂Cl₂ (3 h; Raumtemp.). Ausb. 0.50 g (78%); Schmp. 154–156 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.73 (m; CH₂ aus NBD); 4.17 (m; H_{Brückenk} aus NBD); 5.61 (m; H_{olefin} aus NBD; ²J[¹⁹⁵Pt,H] 40 Hz); 6.57–8.40 (m der 14H_{naphthyl}); gem. Int.-Verh. 2.0/1.9/4.0/14.1 (ber. 2/2/4/14). ¹³C-NMR (CDCl₃): 50.0 (C_{Brückenk}; ²J[¹⁹⁵Pt,C] 36.0 Hz); 74.2 (CH₂ aus NBD); 95.2 (C_{olefin} aus NBD; ¹J[¹⁹⁵Pt,C] 47.8 Hz); Naphthyl-Ligand: 124.3, 124.9, 125.6, 127.5, 131.7, 132.5, 133.9, 151.9. IR(KBr): 1620, 1575, 1490 (ν [C=C] und Gerüstschw.); 1435 (δ [CH₂]); 1305 (δ [C-H_{Brückenk}.]); 815, 805, 800, 740 (γ [C-H_{naphthyl}]). MS (FD): M^+ m/e = 541 (ber. 541 für ¹⁹⁵Pt). Analyse: Gef.: C, 60.20; H, 4.07. C₂₇H₂₂Pt (541.55) ber.: C, 59.88; H, 4.09%.

cis-Bis(naphth-2-yl)bis(triphenylphosphan)platin(II) (10). 40.0 mg (0.06 mmol) 9 wurden 1 h bei Raumtemp. in 8 ml CH_2Cl_2 unter Ar-Schutzgas und unter Lichtausschluß mit 0.52 g (0.20 mmol) $P(C_6H_5)_3$ gerührt. Nach dem Abziehen des Lösungsmittels wurde der Rückstand in dem gerade erforderlichen Volumen CH_2Cl_2 wieder gelöst und diese Lösung dann mit 20 ml CH_3OH überschichtet. Die nach 24 h bei -20 °C ausgefallenen Kristalle wurden isoliert und im Vakuum getrocknet. Ausb. 40.0 mg (75%); Schmp. 150 °C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 6.7–8.2 (kompl. m). ³¹P-NMR (Bruker MSL 300; H_3PO_4 extern. Stand.): δ 16.88; ¹J[¹⁹⁵Pt, ³¹P] 1772 Hz (*cis*-Konfiguration [37–39]). IR (KBr): 1620. 1590. 1570 (Gerüstschw.); 1435, 1100, 1000 (typisch für P(C₆H₅)₃); 850, 810, 750, 740 (γ [C-H_{aromat}]); 540, 525, 515, 500 (*cis*-Konfiguration [13]). MS (FD): $M^+ m/e = 973$ (ber. 973 für ¹⁹⁵Pt).

Analyse: Gef.: C, 68.70; H, 4.50. $C_{56}H_{44}P_2Pt$ (973.99) ber.: C, 69.06; H, 4.55%. cis-Bis(dimethylsulfoxid)bis(naphth-2-yl)platin(II) (11). 0.23 g (0.41 mmol) **9** wurden mit 29.28 g (375 mmol) DMSO 195 h unter Lichtausschluß in 60 ml CH₂Cl₂ bei Raumtemp. gerührt. Der nach vollständiger Entfernung des Lösungsmittels und des überschüssigen DMSO verbliebene ölige Rückstand wurde mit 5 ml CH₃OH digeriert und im Ultraschallbad zur Kristallisation gebracht. Ausb. 0.19 g (77%); farblose Kristalle, Schmp. 155°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz); 2.80 (s; (CH₃)₂SO; mit ¹⁹⁵Pt-Satelliten, ⁴/[¹⁹⁵Pt,H] 15 Hz); 7.0–7.9 (kompl. m der 14H_{aromat}); gem. Int.-Verh. 12.0/14.1 (ber. 12/14). IR (KBr): 2910 (ν [C(sp³)-H]); 1610, 1570, 1550 (Gerüstschw.); 1480 (δ_{as} [CH₃]); 1105, 1090 (typ. für DMSO); 820, 810, 745, 735 (γ [C-H_{aromat}]); 465, 460, 420, 405, 355, 343 (keine sichere Zuordnung möglich). MS (FD): $M^+ m/e = 605$ (ber. 605 für ¹⁹⁵Pt). Analyse: Gef.: C, 47.54; H, 4.50. $C_{24}H_{26}O_2PtS_2$ (605.68) ber.: C, 47.59; H, 4.33%.

cis-Bis(naphth-1-yl)bis(triphenylphosphan)platin(II) (1a). 0.25 g (0.46 mmol) 7a wurden 4 h bei Raumtemp. in 45 ml CH₂Cl₂ mit 0.32 g (1.22 mmol) P(C₆H₅)₃ unter Sauerstoff- und Lichtausschluß gerührt. Nach dem Abziehen des Lösungsmittels wurde aus dem Rückstand durch dreimaliges Digerieren mit je 5 ml CH₃OH im Ultraschallbad überschüssiges P(C₆H₅)₃ entfernt. Ausb. 0.42 g (94%); Schmp. 170 °C (Zers.). Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum (im CW-Betrieb, 60 MHz) erhalten. ³¹P-NMR (CDCl₃; H₃PO₄ ext. Std.): 14.30, 15.00 (*E*- und Z-Diastereomeren-Gemisch); ¹J[¹⁹⁵Pt,³¹P] 1780 Hz (*cis*-Konfiguration). IR (KBr): 1585, 1550 (Gerüstschw.); 1430, 1100, 1000 (typ. für P(C₆H₅)₃); 790, 775, 750 (γ [C-H_{aromat}]); 700 (δ [Ringschw.]); 540, 525, 515, 490 (*cis*-Konfiguration). MS (FD): M^+ m/e = 973 (ber. 973 für ¹⁹⁵Pt). Analyse: Gef.: C, 69.63; H, 4.48. C₅₆H₄₄P₂Pt (973.99) ber.: C, 69.06; H, 4.55%.

cis-Bis[2-(ethoxy)naphth-1-yl]bis(triphenylphosphan)platin(II) (1b). Analog zu 1a aus 0.12 g (0.19 mmol) 7b und 0.40 g (1.51 mmol) $P(C_6H_5)_3$ in 25 ml CH_2Cl_2 (80 h; Raumtemp.). Ausb. 0.15 g (73%); Schmp. 187°C (Zers.). ¹H-NMR (CDCl₃; 300 MHz): 1.47, 1.99 (t,t; -O-CH₂-CH₃, Diastereomere; ³J 6.95 Hz); 3.41-3.44 und 3.97-4.00 (m; -O-CH₂-CH₃); 6.82-7.31 (m; 40 H_{aromat}); 9.23-9.26 (m; 2 peri-H_{naphthyl}); gem. Int.-Verh. 5.54/3.65/40.79/2.01 (ber. 6/4/40/2); Diastereomeren-Verhältnis (ermittelt aus den Tripletts) 1/3. ³¹P-NMR (CDCl₃; H₃PO₄ ext. Std.): 13.77, 12.84 ¹J[¹⁹⁵Pt,³¹P] 1984 Hz (cis-Konfiguration [37-39]). IR (KBr): 1620, 1585, 1550 (Gerüstschw.); 1440, 1100, 1000 (typ. für $P(C_6H_5)_3$); 1225 ($\nu[C(sp^2)-O]$); 1065 ($\nu[C(sp^3)-O]$); 795, 740, 700 ($\gamma[C-H_{aromat}]$; $\delta[Ring]$); 545, 530, 520, 495 (cis-Konfiguration [13]). MS (FD): $M^+ m/e = 1061$ (ber. 1061 für ¹⁹⁵Pt). Analyse: Gef.: C, 67.88; H, 4.72. C₆₀H₅₂O₂P₂Pt (1062.10) ber.: C, 67.85; H, 4.94%.

cis-Bis[2-(methoxy)naphth-1-yl]bis(triphenylphosphan)platin(II) (1c). Analog zu 1a aus 0.21 g (0.35 mmol) 7c und 0.32 g (1.21 mmol) P(C₆H₅)₃ in 40 ml CH₂Cl₂ (67 h; Raumtemp.). Ausb. 0.33 g (92%); Zers. ab 175°C. ¹H-NMR (CDCl₃; 300 MHz): 3.54, 3.86 (s, s; CH₃O von E + Z); 6.81–7.33 (m; 40H_{aromat}); 8.79–8.81 (m; 2 peri-H_{naphthyl}); gem. Int.-Verh. 5.76/40.50/1.75 (ber. 6/40/2); $E/Z = 4.5/1.0.5^{31}$ P-NMR (CDCl₃; H₃PO₄ ext. Stand.): δ 13.12, 12.83; ¹J[¹⁹⁵Pt,³¹P] 2030 Hz (für E und Z im Rahmen der Meßgenauigkeit gleich; *cis*-Konfiguration [37–39]). IR (KBr): 2820 (ν [CH₃O]); 1620, 1585, 1550 (Gerüstschw.); 1440, 1100, 1000 (typ. für P(C₆H₅)₃); 1240 (ν [C(sp^2)–O]); 1070 (ν [C(sp^3)–O]); 790, 740 (γ [C–H_{aromat}]); 695 (δ [Ring]); 545, 530, 525, 500 (*cis*-Konfiguration [13]). MS (FD): $M^+ m/e = 1033$ (ber. 1033 für ¹⁹⁵Pt). Analyse: Gef.: C, 66.63; H, 4.62. C₅₈H₄₈O₂P₂Pt (1034.55) ber.: C, 67.37; H, 4.69%.

cis-Bis[2-methylnaphth-1-yl]bis(triphenylphosphan)platin(II) (1d). Analog zu 1a aus 40 mg (0.07 mmol) 7d und 440 mg (1.68 mmol) $P(C_6H_5)_3$ in 10 ml CH_2Cl_2 (40 h; Raumtemp.). Ausb. 60 mg (76%); Schmp. 178–181°C (Zers.). Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum im CW-Betrieb erhalten. ³¹P-NMR (CDCl₃; H₃PO₄ ext. Stand.): $\delta = 11.92$, 11.98 (E + Z); ¹J[¹⁹⁵Pt,³¹P] 1714 Hz (aus Intens.-Gründen nur für *E* beobachtbar); cis-Konfiguration [37–39]. IR (KBr): 1620, 1583, 1480 (Gerüstschw.); 1430, 1095, 1000 (typ. für $P(C_6H_5)_3$); 820, 745, 735 (γ [C-H_{aromat}]); 695 (δ [Ring]); 538, 525, 515, 490 (cis-Konfiguration [13]). MS (FD): $M^+ m/e = 1001$ (ber. 1001 für ¹⁹⁵Pt). Analyse: Gef. C, 62.62; H, 4.69. $C_{58}H_{48}P_2$ Pt · CH₂Cl₂ (1086.96) ber.: C, 62.50; H, 4.64%.

cis-Bis[4-(methoxy)naphth-1-yl]bis(triphenylphosphan)platin(II) (1e). Analog zu 1a aus 0.48 g (0.80 mmol) 7e und 0.54 g (2.06 mmol) $P(C_6H_5)_3$ in 100 ml CH_2Cl_2 (4 h; 0°C). Ausb. 0.73 g (82%); Schmp. 195°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz, CAT, 32 Scans): 3.3 (s; CH₃O); 6.7–8.0 (kompl. m von 40H_{aromat}); 8.8–9.2 (m der 2 *peri*-H_{naphthyl}). ³¹P-NMR (CDCl₃; H₃PO₄ ext. Stand.): 16.37, 17.03 (*E* + *Z*); ¹*J*[¹⁹⁵Pt, ³¹P] 1784 Hz (nur für E beobachtbar); *cis*-Konfiguration [37–39]. IR (KBr): 2830 (ν [CH₃O]); 1620, 1590 (Gerüstschw.); 1435, 1100, 1000 (typ. für P(C₆H₅)₃); 1230 (ν [C(*sp*²)-O]); 1090 (ν [C(*sp*³)-O]); 805, 760, 750, 735 (γ [C-H_{aromat}]); 700 (δ [Ring]); 542, 530, 520, 500 (*cis*-Konfiguration [13]). MS (FD): *M*⁺ *m/e* = 1033 (ber. 1033 für ¹⁹⁵Pt). Analyse: Gef.: C, 63.34; H, 4.10. C₅₈H₄₈O₂P₂Pt · CH₂Cl₂ (1118.98) ber.: C, 63.33; H, 4.50%.

cis-Bis[4-(dimethylamino)naphth-1-yl]bis(triphenylphosphan)platin(II) (1f). Analog zu 1a aus 90 mg (0.14 mmol) 7f und 120 mg (0.46 mmol) $P(C_6H_4)_3$ in 15 ml CH_2Cl_2 (4 h; -5°C). Ausb. 90 mg (56%); Schmp. 124–126°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 2.53 (s; $(CH_3)_2N$); 6.8–7.8 (kompl. m von 40H_{aromat}); 9.0–9.3 (m der 2 peri-H_{naphthyl}); gem. Int.-Verh. 10.7/41.1/2.1 (ber. 12/40/2). ³¹P-NMR (CDCl₃; H₃PO₄ ext. Stand.): 14.02, 14.51 (E + Z); ¹J[¹⁹⁵Pt,³¹P] 1774 Hz (für E, Z gleich), cis-Konfiguration [37–39]. IR (KBr): 2770, 2820 (typ. für N(CH₃)₂); 1575, 1550 (Gerüstschw.); 1435, 1100, 1000 (typ. für P(C₆H₅)₃); 820, 760, 745, 735 (γ [C-H_{aromat}]); 695 (δ [Ring]); 542, 530, 520, 499 (cis-Konfiguration [13]). MS (FD): $M^+ m/e = 1059$ (ber. 1059 für ¹⁹⁵Pt). Analyse Gef.: C, 64.99; H, 4.92; N, 2.22. C₆₀N₅₄N₂P₂Pt $\cdot \frac{1}{2}$ CH₂Cl₂ (1101.60) ber.: C, 65.90; H, 5.03; N, 2.54%.

cis-Bis[4-bromnaphth-1-yl]bis(triphenylphosphan)platin(II) (1g). Analog zu 1a aus 0.37 g (0.53 mmol) 7g und 0.48 g (1.83 mmol) $P(C_6H_5)_3$ in 40 ml CH_2Cl_2 (3 h; 0°C). Ausb. 0.49 g (82%); Schmp. 180–181°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 6.4–8.0 (kompl. m von 40H_{aromat}); 8.9–9.3 (m der 2 *peri*-H_{naphthyl}). ³¹P-NMR (CHCl₃; H₃PO₄ ext. Stand.): 15.99, 16.55 (E + Z); ¹J[¹⁹⁵Pt, ³¹P] 1826 Hz (für E, Z übereinstimmend), *cis*-Konfiguration [37–39]. IR (KBr): 1590, 1570 (Gerüstschw.); 1430, 1095, 1000 (typ. für $P(C_6H_5)_3$); 855, 845, 840, 815 (γ [C–H_{aromat}]); 538, 525, 515, 490 (*cis*-Konfiguration [13]). MS (FD): $M^+ m/e = 1129$ (ber. 1129 für ⁷⁹Br, ¹⁹⁵Pt). Analyse: Gef. C, 58.99; H, 4.16. $C_{56}H_{42}Br_2P_2Pt$ (1131.79) ber.: C, 59.43; H, 3.47%.

cis-Bis[4-(2-hydroxy-prop-2-yl)naphth-1-yl]bis(triphenylphosphan)platin(II) (1h). Analog zu 1a aus 0.15 g (0.23 mmol) 7h und 0.18 g (0.69 mmol) $P(C_6H_5)_3$ in 30 ml CH_2Cl_2 (6 h; Raumtemp.); Ausb. 0.25 g (98%); Schmp. 138–143°C (Zers.). IR (KBr): 3560 (ν [O-H]); 3440 (breit, ν [O-H_{H-Brücke}]); 1590, 1570, 1540 (Gerüstschw.); 1435, 1100, 1000 (typ. für $P(C_6H_5)_3$); 1470, 1355 (δ_{as} [CH₃], δ_s [CH₃]); 1140 (ν [C-O]); 820, 760, 750 (γ [C-H_{aromat}]); 700 (δ [Ring]); 538, 525, 525, 500 (cis-Konfiguration [13]). MS (FD): $M^+ m/e = 1089$ (ber. 1089 für ¹⁹⁵Pt). Analyse: Gef.: C, 67.90; H, 5.26. $C_{62}H_{56}O_2P_2Pt$ (1090.15) ber.: C, 68.31; H, 5.18%.

cis-Bis[4-(1-hydroxy-1-phenyl-ethyl)naphth-1-yl]bis(triphenylphosphan)platin(II) (Ii). Analog zu 1a aus 0.16 g (0.21 mmol) 7i und 0.14 g (0.53 mmol) $P(C_6H_5)_3$ in 40 ml CH₂Cl₂ (4 h; Raumptemp.). Ausb. 0.14 g (54%); Schmp. 182–185°C (Zers.). Infolge Schwerlöslichkeit kein NMR-Spektrum registrierbar. IR (KBr): 3570 (ν [O-H]); 3440 (breit, ν [O-H_{H-Brücke}]); 1450 (Gerüstschw.); 1440, 1100, 1000 (typ. für P(C₆H₅)₃); 1470, 1350 (δ_{as} [CH₃]; δ_{s} [CH₃]); 1090 (ν [C-O]); 830, 790, 765, 755, 750 (γ [C-H_{aromat}]); 700 (δ [Ring]); 538, 525, 515, 495 (*cis*-Konfiguration [13]). MS (FD): M^+ m/e = 1213 (ber. 1213 für ¹⁹⁵Pt). Analyse: Gef.: C, 70.74; H, 5.25. C₇₂H₆₀O₂P₂Pt (1214.29) ber.: C, 71.22; H, 4.98%.

cis-Bis[4-(trimethylstannoxycarbonyl)naphth-1-yl]bis(triphenylphosphan)platin(11) (1j). Analog zu 1a aus 0.33 g (0.34 mmol) 7j und 0.28 g (1.07 mmol) $P(C_6H_5)_3$ in 40 ml CH_2Cl_2 (7 h; Raumtemp.). Ausb. 0.40 g (80%); Zers. ab 128° C. ¹H-NMR (CDCl₃; 60 MHz): 0.60 (s; (CH₃)₃Sn; ²J[¹¹⁷Sn,H] = ²J[¹¹⁹Sn,H] = 56 Hz); 6.7-7.8 (kompl. m von 38H_{aromat}); 8.4–9.4 (kompl. m von 4H_{naphthyl}, davon 2 *peri* zu Pt und 2 *peri* zu 4-(CH₃)₃Sn-CO-O-); gem. Int. Verh. 17.8/37.9/4.3 (ber. 18/38/4). IR (KBr) 1620 (ν [C=O]); 1535, 1300 (ν_s, ν_{as} [COO]); 1435, 1100, 1000 (typ. für P(C₆H₅)₃); 700 (δ [Ring]); 538, 525, 515, 495 (*cis*-Konfiguration [13]). MS (FD): $M^+ m/e = 1389$ (ber. 1389 für ¹²⁰Sn, ¹⁹⁵ Pt). Analyse: Gef.: C, 55.43; H, 4.94. C₆₄H₆₀O₄P₂PtSn₂ (1387.63) ber.: C, 55.40; H, 4.36%.

cis-Bis(dimethylsulfoxid)bis(naphth-1-yl)platin(II) (12a). 0.15 g (0.28 mmol) 7a wurden in 40 ml CH₂Cl₂ 22 h bei Raumtemp. mit 2.80 g (36 mmol) DMSO gerührt. Aufarbeitung analog zu 11; Ausb. 0.15 g (88%); Schmp. 181°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 2.50 (s; 1 CH₃; mit Satelliten: ³J[¹⁹⁵Pt,H] 16 Hz); 2.81 (s; 1 CH₃; mit Satelliten: ³J[¹⁹⁵Pt,H] 14 Hz; das Auftreten von 2 CH₂-Signalen des DMSO mit unterschiedlichen Kopplungskonstanten zu ¹⁹⁵Pt zeigt – im Rahmen der Zeitskala der NMR-Spektroskopie – die Aufhebung der Rotation von DMSO- und Naphthyl-Liganden an); 6.7–7.9 (kompl. m von 12H_{naphthyl}); 8.7–9.2 (m von 2 peri-H_{naphthyl}); gem. Int.-Verh. 11.8/12.3/1.9(ber. 12/12/2). IR (KBr): 2910 (ν [CH₃]); 1575, 1540 (Gerüstschw.); 1485 (δ_{as} [CH₃]); 1100 (ν [S=O]); 795, 790, 775 (γ [C-H_{aromat}]); 420, 405, 395, 355, 350 (noch keine sichere Zuordnung möglich). MS (FD): M^+ m/e = 605 (ber. 605 für ¹⁹⁵Pt). Analyse: Gef.: C, 46.85; H, 3.91. C₂₄H₂₆O₂PtS₂ (605.68) ber.: C, 47.59; H, 4.33%.

Dank

Dem Verband der Chemischen Industrie – Fonds der Chemischen Industrie – danken wir für großzügige Förderung.

Literatur

- 1 R. Hohenadel und H.-A. Brune, J. Organomet. Chem., (1988), im Druck, und dort zitierte Literatur.
- 2 H. Palkovits, U. Ziegler, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 338 (1988) 119 und dort zitierte Literatur.
- 3 H.-A. Brune und J. Ertl, Liebigs Ann. Chem., (1980) 928.
- 4 H.-A. Brune, J. Ertl, D. Grafl und G. Schmidtberg, Chem. Ber., 115 (1982) 1141.
- 5 U. Bayer und H.-A. Brune, Z. Naturforsch. B, 38 (1983) 226.
- 6 U. Bayer und H.-A. Brune, Z. Naturforsch, B, 38 (1983) 621.
- 7 H.-A. Brune, R. Hess und G. Schmidtberg, Z. Naturforsch. B, 39 (1984) 1772.
- 8 R. Klotzbücher und H.-A. Brune, J. Organomet. Chem., 299 (1986) 399.
- 9 U. Mayr und H.-A. Brune, Z. Naturforsch. B, 41 (1986) 1281.
- 10 P.S. Braterman, Top. Curr. Chem., 92 (1980) 149.
- 11 P.S. Braterman, R.J. Cross und G.B. Young, J. Chem. Soc., Dalton Trans., (1976) 1306; (1977) 1982.
- 12 H.-A. Brune, R. Hess und G. Schmidtberg, Chem. Ber., 118 (1985) 2011.
- 13 H.-A. Brune, R. Hess und G. Schmidtberg, J. Organomet. Chem., 303 (1986) 429.
- 14 H.-A. Brune, B. Stapp und G. Schmidtberg, Chem. Ber., 119 (1986) 1845; J. Organomet. Chem., 307 (1986) 129.
- 15 J. Ertl, T. Debaerdemaeker und H.-A. Brune, Chem. Ber., 115 (1982) 3860.
- 16 H.-A. Brune, M. Wiege und T. Debaerdemaeker, Z. Naturforsch. B, 39 (1984) 359.
- 17 H.-A. Brune, M. Wiege und T. Debaerdemaeker, Z. Naturforsch. B, 39 (1984) 907.
- 18 T. Debaerdemaeker, B. Stapp und H.-A. Brune, Acta Cryst., C 43 (1987) 473.
- 19 T. Debaerdemaeker, R. Baumgärtner und H.-A. Brune, Z. Kristallogr., 180 (1987) 171.
- 20 R. Baumgärtner, H.-A. Brune und T. Debaerdemaeker, Acta Cryst., im Druck.
- 21 T. Debaerdemaeker, K. Berhalter, C. Weisemann und H.-A. Brune, Acta Cryst., C 43 (1987) 1253.
- 22 T. Debaerdemaeker, C. Weisemann und H.-A. Brune, Acta Cryst., C 43 (1987) 432.
- 23 R. Baumgärtner, G. Laube, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 332 (1987) 221.
- 24 R. Baumgärtner und H.-A. Brune, J. Organomet. Chem., 332 (1987) 379.
- 25 R. Baumgärtner, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 345 (1988) 221.
- 26 C. Weisemann und H.-A. Brune, J. Organomet. Chem., im Druck.
- 27 H.-A. Brune, W. Schäfer, K.-H. Spohn und C. Weisemann, J. Organomet. Chem., 316 (1986) 367.
- 28 H.C. Clark und L.E. Manzer, J. Organomet. Chem., 59 (1973) 411.
- 29 C. Eaborn, H.L. Hornfeld und D.R.M. Walton, J. Chem. Soc. B, (1967) 1036; J. Organomet. Chem., 10 (1967) 529.
- 30 C. Eaborn, K.J. Odell und A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 357.
- 31 C. Weisemann und H.-A. Brune, J. Organomet. Chem., 316 (1986) 367.
- 32 C. Weisemann, Dissertation, Universität Ulm, 1987.
- 33 C. Weisemann, G. Schmidtberg und H.-A. Brune, J. Organomet. Chem., 361 (1989) 299.
- 34 C.R. Kistner, J.H. Hutchinson, J.R. Doyle und J.C. Storlie, Inorg. Chem., 2 (1963) 1255.
- 35 K.A. Jensen, Acta Chem. Scand., 7 (1953) 866.
- 36 D.W. Wertz und M.A. Moseley, Spectrochim. Acta, 36A (1980) 467.
- 37 H.-A. Brune, J. Unsin, H.G. Alt, G. Schmidtberg und K.-H. Spohn, Chem. Ber., 117 (1984) 1606.
- 38 H.G. Alt, W.-D. Müller, J. Unsin und H.-A. Brune, J. Organomet. Chem., 307 (1986) 121.
- 39 H.A. Brune, M. Falck, R. Hemmer und H.G. Alt, Chem. Ber., 117 (1984) 2803.